À propos des Firmwares

Sur certains PCs actuels il peut être nécessaire, ou désirable, de charger des firmwares pour faire travailler les PC au maximum de leurs possibilités. Le noyau contient un répertoire, /lib/firmware, ou le noyau ou les pilotes du noyau cherche des images de firmware.

Actuellement, on peut trouver la plupart des firmwares sur un dépôt git qui peut être visualisé dans le navigateur avec l'URL https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/plain. Par commodité, le projet LFS a créé un miroir, mis à jour quotidiennement, où on peut accéder à ces fichiers de firmwares via wget ou un navigateur web sur https://anduin.linuxfromscratch.org/BLFS/linux-firmware/.

Pour récupérer le micrologiciel, pointez votre navigateur vers l'un des dépôts ci-dessus et télécharger les éléments souhaités. Si vous voulez tous les fichiers de micrologiciel (par exemple si vous distribuez le système sur plusieurs systèmes matériels), installez git-2.44.0 et clonez https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git ou ouvrez cette URL dans un navigateur et télécharger la dernière image listée dans l'onglet Tag.

Pour certains autres firmwares, particulièrement pour les micro-codes d'Intel, et certains périphériques wi-fi, le firmware recherché n'est pas disponible dans le dépôt précédent. Certains d'entre eux seront ajouté ensuite, mais il est parfois nécessaire de faire une recherche sur internet pour les firmwares souhaités.

Les fichiers firmwares sont par convention référencés comme des blobs car vous ne pouvez pas déterminer ce qu'ils font. Notez que ces firmwares sont distribués sous des licences différentes et variées qui ne permettent pas le désassemblage ou la retro ingénierie.

Les firmwares pour PC tombent dans 4 catégories :

[Note]

Note

Bien qu’ils soient inutiles pour charger un firmware fermé (blob), les outils suivants peuvent être utiles pour déterminer, obtenir, ou préparer le firmware à utiliser afin de le charger dans le système : cpio-2.15, git-2.44.0, pciutils-3.10.0 et Wget-1.21.4

Mise à jour de micro-codes pour les CPU

En général, le micro-code peut être chargé par le BIOS ou l'UEFI, et il peut être mis à jour en passant à une nouvelle version de celui-ci. Sur Linux, vous pouvez également charger le micro-code depuis le noyau si vous utilisez au moins un AMD de la famille 10h ou un plus récent (introduit après fin 2007), ou un processeur Intel de 1998 et plus (Pentium4, Core, etc), si un micro-code mis à jour a été publié. Ces mises à jour sont actives seulement jusqu'à ce que la machine soit éteinte, il est donc nécessaire de les appliquer à chaque démarrage.

Intel fournit des mises à jour de leur microcode pour les versions Skylake et ultérieures de leurs processeurs quand de nouvelles vulnérabilités sont découvertes, et l'ont fait pour les processeurs SandyBridge et ultérieurs par le passé, bien qu'ils ne soient plus pris en charge pour les nouvelles corrections. Les nouvelles versions de microprogramme d'AMD sont rares et ne s'appliquent qu'à quelques modèles, bien que les fabricants de carte mères obtiennent des mises à jour AGESA (AMD Generic Encapsulated Software Architecture) pour changer les valeurs du BIOS, par exemple pour prendre en charge plus de variantes de mémoire, de nouvelles vulnérabilités ou de nouveaux CPU.

Il y avait deux façons de charger le microcode, décrites comme « au plus tôt » et « au plus tard ». Le chargement « au plus tôt » arrive avant que l'espace utilisateur ne démarre, le chargement « au plus tard » arrive quand l'espace utilisateur est démarré. Cependant, le chargement au plus tard est problématique et n'est plus pris en charge (voir l commit du noyau noté x86/microcode: Taint and warn on late loading). En effet, il est nécessaire de contourner une erreur particulière dans les premiers processeurs Intel Haswell qui ont le TSX d'activé. (Voir Intel Disables TSX Instructions: Erratum Found in Haswell, Haswell-E/EP, Broadwell-Y). Sans cette mise à jour glibc peut produire des erreurs dans des situations particulières.

Dans les versions précédentes de ce livre, nous recommandions le chargement au plus tard pour voir s'il était appliqué, suivi par l'utilisation d'un initrd pour forcer le chargement au plus tôt. Mais maintenant que le contenu de l'archive de microcode Intel est documenté, et que le microcode AMD peut être lu par un script Python pour déterminer les machines qu'il couvre, il n'y a plus de raison d'utiliser le chargement au plus tard.

Il reste peut-être possible de manuellement forcer le chargement « au plus tard » du microcode, mais cela pourrait occasionner une malfonction du noyau et vous devez être conscient·e du risque. Vous devrez reconfigurer votre noyau pour le chargement « au plus tard », mais le chargement « au plus tôt » est toujours pris en charge par le noyau Linux version 6.6 et supérieur pour les systèmes x86 (peu importe qu'ils soient en 32 ou en 64 bits). Les instructions ici montrent comment créer un initrd pour un chargement « au plus tôt ». Il est aussi possible d'intégrer le même fichier binaire de microcode dans le noyau, ce qui permet le chargement au plus tôt mais nécessite de recompiler le noyau pour mettre à jour le microcode.

Pour déterminer l'identité de votre processeur (s'il y en a plus d'un, ils seront identiques) regardez dans /proc/cpuinfo. Déterminez les valeurs décimales de la famille du processeur, le modèle, et le pas en exécutant la commande suivante (elle rapportera aussi la version actuelle du micro-code) :

head -n7 /proc/cpuinfo

Convertissez la famille, le modèle et le pas du processeur en paires de nombre hexadécimaux et rappelez-vous la valeur du champ « microcode ». Vous pouvez maintenant vérifier si un microcode est disponible.

Si vous créez un initrd pour mettre à jour le microcode de différentes machines, comme le ferait une distro, regardez « Chargement du microcode au plus tôt » et concaténez tous les blobs Intel dans GenuineIntel.bin ou tous ceux de AMD dans AUthenticAMD.bin. Cela crée un initrd plus gros — pour toutes les machines Intel dans la mise à jour 20200609 la taille est de 3,0 Mo par rapport à 24 Ko pour une seule machine.

Micro-code Intel pour le processeur

La première étape consiste à obtenir la version la plus récente du microcode d'Intel. Vous devez pour cela aller sur https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/ et télécharger le fichier le plus récent. Au moment de l'écriture de ces lignes la version la plus sure du micro-code est microcode-20231114. Extrayez ce fichier normalement, le microcode se trouve dans le répertoire intel-ucode qui contient les divers blobs avec des noms de la forme XX-YY-ZZ. Il y a aussi d'autres fichiers divers et un fichier releasenote.

Par le passé, Intel ne fournissait aucun détails sur les blobs dont la version changeait, mais maintenant les releasenote en parlent. Vous pouvez comparer la version du microcode dans /proc/cpuinfo avec la version pour votre modèle de CPU dans les releasenote pour savoir s'il y a une mise à jour.

Le firmware récent pour les processeurs les plus anciens est fournit pour traiter des vulnérabilités qui ont été rendue publiques, et pour certains d'entre eux comme le Microarchitectural Data Sampling (MDS) vous pourriez vouloir augmenter la protection en désactivant l'hyperthreading ou en désactivant les contournements par défaut du noyau à cause de son impact sur les temps de compilation. Lisez bien la documentation en ligne sur https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html.

Pour un mobile Tigerlake (décrit comme Intel(R) Core(TM) i5-1300H CPU) les valeurs utiles sont famille CPU 6, modèle 140, pas 1, donc dans ce cas l'identifiant requis est 06-8c-01. Les releasenote disent que le dernier microcode pour ce CPU est la version 0xb4. Si la valeur du champ « microcode » dans /proc/cpuinfo est 0xb4 ou plus, cela signifie que la mise à jour du microcode est déjà appliquée par le BIOS. Sinon, consultez la section intitulée « Chargement "tôt" du micro-code ».

Micro-code AMD pour le processeur

Commencez par télécharger un paquet de firmware pour votre famille de CPU sur https://anduin.linuxfromscratch.org/BLFS/linux-firmware/amd-ucode/. La famille est toujours spécifiée en hexadécimal. Les familles 10h à 14h (16 à 20) sont dans microcode_amd.bin. Les familles 15h, 16h, 17h (Zen, Zen+, Zen2) et 19h (Zen3) ont leur propre conteneur. Seules quelques machines sont susceptibles de recevoir une mise à jour du microcode. Au lieu de cela, AMD fournit un AGESA à jour aux constructeurs de cartes mères qui peuvent l'utiliser pour proposer une mise à jour du BIOS. Il y a un script Python3 sur https://github.com/AMDESE/amd_ucode_info/blob/master/amd_ucode_info.py. Téléchargez ce script et lancez-le avec le fichier binaire pour vérifier si vos processeurs ont une mise à jour.

Pour le très vieil Athlon(tm) II X2 de ces exemples, les valeurs étaient famille CPU 16, modèle 5, pas 3, ce qui donne un identifiant Family=0x10 Model=0x05 Stepping=0x03. Une ligne de la sortie du script amd_ucode_info.py décrit la version du microcode pour ce CPU :

Family=0x10 Model=0x05 Stepping=0x03: Patch=0x010000c8 Length=960 bytes

Si la valeur du champ « microcode » dans /proc/cpuinfo est 0x10000c8 ou plus, cela signifie que le BIOS a déjà appliqué la mise à jour du microcode. Sinon, consultez la section intitulée « Chargement "tôt" du micro-code ».

Chargement "tôt" du micro-code

Si vous avez établi qu'un micro-code mis à jour est disponible pour votre système, il est temps de le préparer pour un chargement "tôt". Cela demande un paquet supplémentaire, cpio-2.15 et la création d'un initrd qui devra être ajouté à grub.cfg.

L'endroit ou vous préparez l'initrd n'est pas important, et une fois fonctionnel vous pouvez appliquer le même initrd aux versions futures de LFS ou aux nouveaux noyaux sur cette même machine, au moins jusqu'à ce qu'une nouvelle version du micro-code soit publiée. Utiliser la suite :

mkdir -p initrd/kernel/x86/microcode
cd initrd

Pour une machine AMD, utilisez la commande suivante (remplacez <MYCONTAINER> par le nom du paquet de votre famille de CPU) :

cp -v ../<MYCONTAINER> kernel/x86/microcode/AuthenticAMD.bin

Ou pour une machine Intel copiez le blob approprié en utilisant cette commande :

cp -v ../intel-ucode/<XX-YY-ZZ> kernel/x86/microcode/GenuineIntel.bin

Maintenant préparez l'initrd :

find . | cpio -o -H newc > /boot/microcode.img

Vous devrez également ajouter une nouvelle entrée à /boot/grub/grub.cfg et vous devrez ajouter une ligne après la ligne linux entre les apostrophes. Si /boot est dans une partition séparée :

initrd /microcode.img

ou sinon :

initrd /boot/microcode.img

Si vous avez déjà démarré avec un initrd (voir la section intitulée « À propos de initramfs ») vous deviez de nouveau lancer mkinitramfs après avoir placé le blob ou le conteneur approprié dans /lib/firmware. Plus précisément, placez le blob Intel dans le répertoire /lib/firmware/intel-ucode ou le conteneur AMD dans /lib/firmware/amd-ucode avant d'exécuter mkinitramfs. Autrement, vous pouvez avoir les deux initrd sur la même ligne, comme dans initrd /microcode.img /other-initrd.img (adaptez comme ci-dessus si /boot n'est pas dans une partition séparée).

Vous pouvez maintenant redémarrer avec l'initrd supplémentaire, puis utiliser la même commande pour vérifier que le chargement « au plus tôt » a fonctionné.

dmesg | grep -e 'microcode' -e 'Linux version' -e 'Command line'

Si vous avez mis à jour pour corriger des vulnérabilités, vous pouvez regarder la sortie de la commande lscpu pour voir ce qu'il rapporte maintenant.

Les endroits et les moments où le chargement au plus tôt se passent sont très différents entre les machines AMD et Intel. En premier, un exemple d'Intel (mobile Tigerlake) avec le chargement au plus tôt :

[    0.000000] microcode: microcode updated early: 0x86 -> 0xb4, date = 2023-09-07
[    0.000000] Linux version 6.6.1 (xry111@stargazer) (gcc (GCC) 13.2.0, GNU ld (GNU Binutils) 2.41) #36 SMP PREEMPT_DYNAMIC Tue Nov 14 01:56:04 CST 2023
[    0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-6.6.1 root=PARTUUID=<CLASSIFIED> ro
[    0.424002] microcode: Microcode Update Driver: v2.2.

Un exemple historique pour AMD :

[    0.000000] Linux version 4.15.3 (ken@testserver) (gcc version 7.3.0 (GCC))
               #2 SMP Sun Feb 18 02:32:03 GMT 2018
[    0.000000] Command line: BOOT_IMAGE=/vmlinuz-4.15.3-sda5 root=/dev/sda5 ro
[    0.307619] microcode: microcode updated early to new patch_level=0x010000c8
[    0.307678] microcode: CPU0: patch_level=0x010000c8
[    0.307723] microcode: CPU1: patch_level=0x010000c8
[    0.307795] microcode: Microcode Update Driver: v2.2.

Firmware pour les cartes vidéo

Firmware pour les puces vidéo ATI (R600 et plus)

Ces instructions NE s'appliquent PAS aux anciennes radeons avant la famille R600. Pour elles, le firmware est dans le répertoire du noyau /lib/firmware/. Appliquez-les seulement si vous prévoyez d'éviter une configuration graphique tels que Xorg et que vous voulez vous contenter d'utiliser l'affichage 80x25 par défaut plutôt qu'un framebuffer.

Les périphériques radeon plus anciens demandaient seulement un simple blob de 2 Ko. Les périphériques récents ont besoin de plusieurs blobs différents, et certains d'entre eux sont bien plus gros. La taille totale du répertoire des firmwares radeon est de plus de 500 Ko — sur un gros système moderne vous pouvez probablement utiliser cet espace, mais cela reste redondant d'installer tous les fichiers inutiles chaque fois que vous construisez un système.

Une meilleure approche est d'installerpciutils-3.10.0 et ensuite utiliser lspci pour identifier quel controleur VGA est installé.

Avec cette information, vérifiez la page RadeonFeature du wiki Xorg Decoder ring for engineering vs marketing names pour identifier la famille (vous aurez besoin de savoir cela pour identifier le pilote Xorg dans BLFS — Southern Islands et Sea Islands utilise le pilote radeonsi) et le modèle spécifique.

Maintenant que vous savez quel contrôleur vous allez utiliser, consultez la page Radeon du wiki de Gentoo qui a un tableau listant les blobs de firmware requis pour les différentes puces. Notez que les puces Southern Islands et Sea Islands utilisent des firmwares différents pour les noyaux 3.17 et supérieur par rapport aux noyaux antérieurs. Identifiez et téléchargez les blobs requis et ensuite installez les :

mkdir -pv /lib/firmware/radeon
cp -v <YOUR_BLOBS> /lib/firmware/radeon

Construire le pilote amdgpu du noyau en tant que module est recommandé car les fichiers du micrologiciel doivent être accessibles au moment du chargement. Si vous le construisez dans l'image du noyau pour quelque raison que ce soit, vous devez inclure les fichiers du micrologiciel dans l'initramfs (consultez la section intitulée « À propos de initramfs » pour les détails) ou les inclure dans l'image du noyau directement (consultez la section intitulée « Inclure les blobs des micrologiciels dans l'image du noyau » pour les détails).

Firmware pour les puces vidéo amdgp AMD/ATI

Tous les controlleurs vidéo qui utilisent le pilote amdgpu du noyau ont besoin d'un firmware, que vous utilisiez le pilote amdgpu de xorg, le pilote modesetting de xserver, ou juste de modesetting du noyau pour avoir un framebuffer de console plus grand que 80x25.

Installez pciutils-3.10.0 et utilisez-le pour vérifier le nom du modèle (cherchez « VGA compatible controller: »). Si vous ave un APU (unité de traitement accélérée, c'est-à-dire le CPU et la carte vidéo sur la même puce), cela vous en dira sans doute le nom. Si vous avez une carte vidéo amdgpu séparée vous devrez chercher pour déterminer le nom qu'elle utilise (p. ex. une carte décrite comme Advanced Micro Devices, Inc. [AMD/ATI] Baffin [Radeon RX 550 640SP / RX 560/560X] a besoin du pilote Polaris11). Il y a une table de correspondance « Famille, nom de puce, nom de produit et firmware » à la fin des sections du noyau sur la page AMDGPU du wiki de Gentoo.

Une fois que vous avez identifié le nom du firmware, installez tous les fichiers utiles. Par exemple, la carte Baffin mentionnée plus tôt a 21 fichiers polaris11* différents, les APU comme renoir et picasso ont au moins 12 fichiers et pourront en avoir plus dans les mises à jour futures (p. ex. l'APU raven a maintenant un 13ème fichier, raven_ta.bin).

mkdir -pv /lib/firmware/amdgpu
cp -v <YOUR_BLOBS> /lib/firmware/amdgpu

Si l'espace disque n'est pas un problème, vous pouvez installer tous les fichiers de firmware actuel sans vous soucier de savoir quelle puce est installée.

Construire le pilote amdgpu du noyau en tant que module est recommandé car les fichiers du micrologiciel doivent être accessibles au moment du chargement. Si vous le construisez dans l'image du noyau pour quelque raison que ce soit, vous devez inclure les fichiers du micrologiciel dans l'initramfs (consultez la section intitulée « À propos de initramfs » pour les détails) ou les inclure dans l'image du noyau directement (consultez la section intitulée « Inclure les blobs des micrologiciels dans l'image du noyau » pour les détails).

Firmware pour les puces vidéo Nvidia

Nvidia a publié des firmware de base signés pour les puces graphiques récentes, mais bien après que les puces et ses propres pilotes binaires ne soient disponibles. Pour les autres puces il était nécessaire d'extraire le firmware du pilote binaire.

Pour des informations précises sur les puces qui ont besoin d'un firmware extrait, voir https://nouveau.freedesktop.org/VideoAcceleration.html.

Si le firmware requis est disponible dans le répertoire nvidia/ de linux-firmware, copiez-le dans /lib/firmware/nouveau.

Si le firmware n'a pas été mis à disposition dans linux-firmware, pour les anciennes puces mentionnées dans le lien vers le wiki de nouveau ci-dessus, exécutez les commandes suivantes :

wget https://anduin.linuxfromscratch.org/BLFS/nvidia-firmware/extract_firmware.py
wget https://us.download.nvidia.com/XFree86/Linux-x86/340.32/NVIDIA-Linux-x86-340.32.run
sh NVIDIA-Linux-x86-340.32.run --extract-only
python3 extract_firmware.py
mkdir -p /lib/firmware/nouveau
cp -d nv* vuc-* /lib/firmware/nouveau/

Firmware pour les interfaces réseaux

Le noyau aime charger des firmware pour quelques pilotes réseaux, particulièrement ceux du répertoire Realtek (/lib/linux-firmware/rtl_nic/), mais il apparaît généralement que cela fonctionne sans. Cependant, vous pouvez démarrer le noyau, vérifier si dmesg contient des messages à propos de firmwares manquants, et si nécessaire télécharger les firmwares et les mettre dans un répertoire spécifique dans /lib/firmware afin qu'ils puissent être trouvés lors des prochains démarrages. Notez qu'avec les noyaux actuels cela fonctionne que le pilote soit compilé dedans ou construit comme un module, il n'est pas utile de construire ce firmware dans le noyau. Ici un exemple ou le pilote R8169 a été compilé dedans mais le firmware n'est pas disponible. Une fois que le firmware a été fourni, il n'y est plus fait mention dans les démarrages suivants.

dmesg | grep firmware | grep r8169
[    7.018028] r8169 0000:01:00.0: Direct firmware load for rtl_nic/rtl8168g-2.fw failed with error -2
[    7.018036] r8169 0000:01:00.0 eth0: unable to load firmware patch rtl_nic/rtl8168g-2.fw (-2)

Micrologiciel pour les bases de données légales pour les périphériques sans fil

Plusieurs pays ont des réglementations différentes sur l'utilisation du spectre radio des appareils sans-fil. Vous pouvez installer un microprogramme pour qu'un appareil sans-fil obéisse aux réglementations sur les émissions, pour ne pas être inquiété par les autorités ou découvrir que votre wifi brouille les fréquences d'autres appareils (par exemple des télécommandes). Le microprogramme qui contient la base de régulations se trouve sur https://kernel.org/pub/software/network/wireless-regdb/. Pour l'installer, extrayez simplement regulatory.db et regulatory.db.p7s de l'archive vers /lib/firmware. Remarquez que vous devez soit sélectionner le pilote cfg80211 en tant que module pour que les fichiers regulatory.* soient chargés, soit inclure ces fichiers directement comme un micrologiciel dans le noyau, comme expliqué plus haut dans la section intitulée « Firmware pour les cartes vidéo ».

Le point d'accès (AP) enverrait un code de pays à votre carte sans fil, et wpa_supplicant-2.10 dirait au noyau de charger les règles pour ce pays à partir de regulatory.db et de les utiliser. Remarquez que de nombreux points d'accès n'envoient pas de code de pays, donc vous pourriez être bloqué dans une utilisation restreinte (surtout si vous voulez utiliser votre interface comme point d'accès).

Micrologiciels libres pour l'audio

Certains systèmes (surtout les portables pas chers) utilisent un DSP fournit avec le CPU pour se connecter au codec audio. Le micrologiciel libre pour l'audio (Open Sound Firmware) doit être chargé sur le DSP pour le rendre fonctionnel. Ces fichiers de micrologiciel peuvent être téléchargés sur https://github.com/thesofproject/sof-bin/releases. Extrayez l'archive et rendez-vous dans le répertoire extrait, puis en tant qu'utilisateur root installez le micrologiciel :

install -vdm755 /usr/lib/firmware/intel    &&
cp -av -T --no-preserve=ownership sof      \
   /usr/lib/firmware/intel/sof             &&
cp -av -T --no-preserve=ownership sof-tplg \
   /usr/lib/firmware/intel/sof-tplg

alsa-lib-1.2.11 nécessite des fichiers de configuration de type « Use Case Manager » pour que le système utilise également ce micrologiciel. Les fichiers de configuration UCM d'ALSA peuvent être téléchargés sur https://www.alsa-project.org/files/pub/lib/alsa-ucm-conf-1.2.11.tar.bz2. Extrayez l'archive et rendez-vous dans le répertoire extrait, puis en tant qu'utilisateur root installez les fichiers de configuration :

install -vdm755 /usr/share/alsa &&
cp -av -T --no-preserve=ownership ucm2 /usr/share/alsa/ucm2

Une fois le micrologiciel chargé (vous devrez peut-être redémarrer pour que le noyau les charge) et les fichiers de configuration UCM installés, suivez la section intitulée « Configuration de ALSA Utilities » pour configurer votre carte son avec ALSA correctement.

Firmware pour les autres périphériques

Pour identifier le bon firmware vous devrez normallement install pciutils-3.10.0 puis utiliser lspci pour identifier le matériel. Vous devriez ensuite chercher en ligne pour vérifier le module qu’il utilise, quel firmware et où obtenir le firmware — ils ne sont pas tous dans linux-firmware.

Si possible, vous pouvez commencer par utiliser une connexion filaire quand vous démarrez la première fois votre système LFS. Pour utiliser une connexion sans fils vous aurez besoin d'utiliser des outils réseau tels que iw-6.7, Wireless Tools-29 ou wpa_supplicant-2.10.

Les firmwares peuvent aussi être utiles pour d'autres périphériques comme les contrôleurs SCSI, les adaptateurs Bluetooth, ou les enregistreurs TV. Les mêmes principes s'appliquent.

Inclure les blobs des micrologiciels dans l'image du noyau

Certains pilotes, surtout les pilotes pour les GPU ATI ou AMD, ont besoin que des fichiers de micrologiciel soient accessibles au chargement. La méthode la plus facile de gérer ces pilotes est de les construire en tant que module du noyau. Une autre méthode consiste à créer un initramfs (consultez la section intitulée « À propos de initramfs » pour les détails) qui contiendrait les fichiers du micrologiciel. Si vous ne voulez pas utiliser ces méthodes, vous pouvez inclure directement les fichiers du micrologiciel dans l'image du noyau. Installez d'abord les fichiers de micrologiciel requis dans /lib/firmware, puis configurez le noyau et reconstruisez-le :

Device Drivers --->
  Generic Driver Options --->
    Firmware loader --->
      <*>                   Firmware loading facility                [FW_LOADER]
      (xx/aa.bin xx/bb.bin)   Build named firmware blobs into the kernel binary
                                                           ...  [EXTRA_FIRMWARE]
      (/lib/firmware)           Firmware blobs root directory
                                                       ...  [EXTRA_FIRMWARE_DIR]

Remplacez xx/aa.bin xx/bb.bin par une liste de chemins séparés par des espaces vers les fichiers requis, relativement à /lib/firmware. Une méthode plus simple que de taper la liste complète à la main (ça peut être long) consiste à exécuter la commande suivante :

echo CONFIG_EXTRA_FIRMWARE='"'$({ cd /lib/firmware; echo amdgpu/* })'"' >> .config
make oldconfig

Remplacez amdgpu/* par un motif shell correspondant aux fichiers de micrologiciel requis.

[Avertissement]

Avertissement

Ne distribuez pas une image du noyau contenant les micrologiciels à d'autres personnes ou vous pourriez violer la licence GPL.